skip to main content


Search for: All records

Creators/Authors contains: "Kim, Jeeeun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increase of distributed embedded systems has enabled pervasive sensing, actuation, and information displays across buildings and surrounding environments, yet also entreats huge cost expenditure for energy and human labor for maintenance. Our daily interactions, from opening a window to closing a drawer to twisting a doorknob, are great potential sources of energy but are often neglected. Existing commercial devices to harvest energy from these ambient sources are unaffordable, and DIY solutions are left with inaccessibility for non-experts preventing fully imbuing daily innovations in end-users. We present E3D, an end-to-end fabrication toolkit to customize self-powered smart devices at low cost. We contribute to a taxonomy of everyday kinetic activities that are potential sources of energy, a library of parametric mechanisms to harvest energy from manual operations of kinetic objects, and a holistic design system for end-user developers to capture design requirements by demonstrations then customize augmentation devices to harvest energy that meets unique lifestyle.

     
    more » « less
    Free, publicly-accessible full text available October 8, 2024
  2. Free, publicly-accessible full text available August 1, 2024
  3. Wissa, Aimy ; Gutierrez Soto, Mariantonieta ; Mailen, Russell W. (Ed.)
    This study presents the use of a 3D printing method to create kerf structures that can be formed into complex geometries. Kerfing is a subtractive manufacturing method to create flexible surfaces out of stiff planar materials such as metal or wood sheets by removing portions of the materials. The kerf structures are characterized by the kerf pattern, such as square interlocked Archimedean spiral and hexagon spiral domain, cell size, and cut density. By controlling the kerf pattern, spatial density, cell size, and material, the local properties of the structure can be controlled and optimized to achieve the desired local flexibility while minimizing the stresses developed in the kerf structure. Since subtractive manufacturing limits the patterns and materials that can be considered in kerf structures, FDM 3D printing is explored to fabricate kerf structures using polymers, such as Polylactic acid (PLA) and Thermoplastic polyurethane (TPU), where it is possible to vary microstructural topology and materials within the kerf structures. 3D printing enables the combination of the two different polymers and tuning printing factors to create multifunctional kerf structures. The multifunctional kerf structures can then be actuated using non-mechanical stimulations, such as thermal, to shape them into complex geometries. 
    more » « less